Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Nat Commun ; 13(1): 440, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1641960

ABSTRACT

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , COVID-19 Drug Treatment
2.
Front Immunol ; 12: 798276, 2021.
Article in English | MEDLINE | ID: covidwho-1606542

ABSTRACT

Effects of initiation of programmed-death-protein 1 (PD1) blockade during active SARS-CoV-2 infection on antiviral immunity, COVID-19 course, and underlying malignancy are unclear. We report on the management of a male in his early 40s presenting with highly symptomatic metastatic lung cancer and active COVID-19 pneumonia. After treatment initiation with pembrolizumab, carboplatin, and pemetrexed, the respiratory situation initially worsened and high-dose corticosteroids were initiated due to suspected pneumonitis. After improvement and SARS-CoV-2 clearance, anti-cancer treatment was resumed without pembrolizumab. Immunological analyses with comparison to otherwise healthy SARS-CoV-2-infected ambulatory patients revealed a strong humoral immune response with higher levels of SARS-CoV-2-reactive IgG and neutralizing serum activity. Additionally, sustained increase of Tfh as well as activated CD4+ and CD8+ T cells was observed. Sequential CT scans showed regression of tumor lesions and marked improvement of the pulmonary situation, with no signs of pneumonitis after pembrolizumab re-challenge as maintenance. At the latest follow-up, the patient is ambulatory and in ongoing partial remission on pembrolizumab. In conclusion, anti-PD1 initiation during active COVID-19 pneumonia was feasible and cellular and humoral immune responses to SARS-CoV-2 appeared enhanced in our hospitalized patient. However, distinguishing COVID-19-associated changes from anti-PD1-associated immune-related pneumonitis posed a considerable clinical, radiographic, and immunologic challenge.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , COVID-19 Drug Treatment , Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , SARS-CoV-2/drug effects , Adult , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/complications , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Carcinoma, Non-Small-Cell Lung/complications , Carcinoma, Non-Small-Cell Lung/immunology , Humans , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Lung Neoplasms/complications , Lung Neoplasms/immunology , Male , Neoplasm Metastasis , Pneumonia/immunology , Pneumonia/prevention & control , Pneumonia/virology , SARS-CoV-2/immunology
3.
Ann Med ; 53(1): 181-188, 2021 12.
Article in English | MEDLINE | ID: covidwho-1575964

ABSTRACT

OBJECTIVE: To illustrate the effect of corticosteroids and heparin, respectively, on coronavirus disease 2019 (COVID-19) patients' CD8+ T cells and D-dimer. METHODS: In this retrospective cohort study involving 866 participants diagnosed with COVID-19, patients were grouped by severity. Generalized additive models were established to explore the time-course association of representative parameters of coagulation, inflammation and immunity. Segmented regression was performed to examine the influence of corticosteroids and heparin upon CD8+ T cell and D-dimer, respectively. RESULTS: There were 541 moderate, 169 severe and 156 critically ill patients involved in the study. Synchronous changes of levels of NLR, D-dimer and CD8+ T cell in critically ill patients were observed. Administration of methylprednisolone before 14 DFS compared with those after 14 DFS (ß = 0.154%, 95% CI=(0, 0.302), p=.048) or a dose lower than 40 mg per day compared with those equals to 40 mg per day (ß = 0.163%, 95% CI=(0.027, 0.295), p=.020) significantly increased the rising rate of CD8+ T cell in 14-56 DFS. CONCLUSIONS: The parameters of coagulation, inflammation and immunity were longitudinally correlated, and an early low-dose corticosteroid treatment accelerated the regaining of CD8+ T cell to help battle against SARS-Cov-2 in critical cases of COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , COVID-19 Drug Treatment , Glucocorticoids/administration & dosage , Inflammation/drug therapy , Adult , Aged , Aged, 80 and over , Blood Coagulation/drug effects , Blood Coagulation/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , Dose-Response Relationship, Drug , Female , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/immunology , Heparin/administration & dosage , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/immunology , Linear Models , Longitudinal Studies , Lymphocyte Count , Male , Methylprednisolone/administration & dosage , Middle Aged , Models, Biological , Retrospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Time-to-Treatment , Young Adult
4.
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1518198

ABSTRACT

A substantial proportion of patients who have recovered from coronavirus disease-2019 (COVID-19) experience COVID-19-related symptoms even months after hospital discharge. We extensively immunologically characterized patients who recovered from COVID-19. In these patients, T cells were exhausted, with increased PD-1+ T cells, as compared with healthy controls. Plasma levels of IL-1ß, IL-1RA, and IL-8, among others, were also increased in patients who recovered from COVID-19. This altered immunophenotype was mirrored by a reduced ex vivo T cell response to both nonspecific and specific stimulation, revealing a dysfunctional status of T cells, including a poor response to SARS-CoV-2 antigens. Altered levels of plasma soluble PD-L1, as well as of PD1 promoter methylation and PD1-targeting miR-15-5p, in CD8+ T cells were also observed, suggesting abnormal function of the PD-1/PD-L1 immune checkpoint axis. Notably, ex vivo blockade of PD-1 nearly normalized the aforementioned immunophenotype and restored T cell function, reverting the observed post-COVID-19 immune abnormalities; indeed, we also noted an increased T cell-mediated response to SARS-CoV-2 peptides. Finally, in a neutralization assay, PD-1 blockade did not alter the ability of T cells to neutralize SARS-CoV-2 spike pseudotyped lentivirus infection. Immune checkpoint blockade ameliorates post-COVID-19 immune abnormalities and stimulates an anti-SARS-CoV-2 immune response.


Subject(s)
COVID-19/complications , Cytokines/immunology , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Case-Control Studies , Cytokines/drug effects , DNA Methylation , Female , Humans , Immunophenotyping , In Vitro Techniques , Interleukin 1 Receptor Antagonist Protein/drug effects , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-1beta/drug effects , Interleukin-1beta/immunology , Interleukin-8/drug effects , Interleukin-8/immunology , Male , MicroRNAs/metabolism , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Promoter Regions, Genetic , Post-Acute COVID-19 Syndrome
5.
Adv Drug Deliv Rev ; 179: 114020, 2021 12.
Article in English | MEDLINE | ID: covidwho-1486938

ABSTRACT

Adjuvant is an essential component in subunit vaccines. Many agonists of pathogen recognition receptors have been developed as potent adjuvants to optimize the immunogenicity and efficacy of vaccines. Recently discovered cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has attracted much attention as it is a key mediator for modulating immune responses. Vaccines adjuvanted with STING agonists are found to mediate a robust immune defense against infections and cancer. In this review, we first discuss the mechanisms of STING agonists in the context of vaccination. Next, we present recent progress in novel STING agonist discovery and the delivery strategies. We next highlight recent work in optimizing the efficacy while minimizing toxicity of STING agonist-assisted subunit vaccines for protection against infectious diseases or treatment of cancer. Finally, we share our perspectives of current issues and future directions in further developing STING agonists for adjuvanting subunit vaccines.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Membrane Proteins/agonists , Membrane Proteins/immunology , Vaccines, Subunit/immunology , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Dendritic Cells/drug effects , Humans , Immunity, Humoral/drug effects , Nucleotidyltransferases/metabolism
6.
J Cell Physiol ; 237(2): 1521-1531, 2022 02.
Article in English | MEDLINE | ID: covidwho-1490820

ABSTRACT

Mechanical forces can modulate the immune response, mostly described as promoting the activation of immune cells, but the role and mechanism of pathological levels of mechanical stress in lymphocyte activation have not been focused on before. By an ex vivo experimental approach, we observed that mechanical stressing of murine spleen lymphocytes with 50 mmHg for 3 h induced the nuclear localization of NFAT1, increased C-Jun, and increased the expression of early activation marker CD69 in resting CD8+ cells. Interestingly, 50 mmHg mechanical stressing induced the nuclear localization of NFAT1; but conversely decreased C-Jun and inhibited the expression of CD69 in lymphocytes under lipopolysaccharide or phorbol 12-myristate 13-acetate/ionomycin stimulation. Additionally, we observed similar changes trends when comparing RNA-seq data of hypertensive and normotensive COVID-19 patients. Our results indicate a biphasic effect of mechanical stress on lymphocyte activation, which provides insight into the variety of immune responses in pathologies involving elevated mechanical stress.


Subject(s)
Lymphocyte Activation/immunology , Stress, Mechanical , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , COVID-19/complications , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Comorbidity , Gene Expression Regulation/drug effects , Humans , Hypertension/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ion Channels/metabolism , Lectins, C-Type/metabolism , Lipopolysaccharides/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Male , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Protein Transport/drug effects , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction/drug effects , Tetradecanoylphorbol Acetate/pharmacology
7.
Mol Ther ; 29(6): 1970-1983, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1386766

ABSTRACT

A self-transcribing and replicating RNA (STARR)-based vaccine (LUNAR-COV19) has been developed to prevent SARS-CoV-2 infection. The vaccine encodes an alphavirus-based replicon and the SARS-CoV-2 full-length spike glycoprotein. Translation of the replicon produces a replicase complex that amplifies and prolongs SARS-CoV-2 spike glycoprotein expression. A single prime vaccination in mice led to robust antibody responses, with neutralizing antibody titers increasing up to day 60. Activation of cell-mediated immunity produced a strong viral antigen-specific CD8+ T lymphocyte response. Assaying for intracellular cytokine staining for interferon (IFN)γ and interleukin-4 (IL-4)-positive CD4+ T helper (Th) lymphocytes as well as anti-spike glycoprotein immunoglobulin G (IgG)2a/IgG1 ratios supported a strong Th1-dominant immune response. Finally, single LUNAR-COV19 vaccination at both 2 µg and 10 µg doses completely protected human ACE2 transgenic mice from both mortality and even measurable infection following wild-type SARS-CoV-2 challenge. Our findings collectively suggest the potential of LUNAR-COV19 as a single-dose vaccine.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/administration & dosage , Alphavirus/genetics , Alphavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/biosynthesis , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Female , Gene Expression , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Mice , Mice, Transgenic , Replicon/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/virology , Transgenes , Treatment Outcome , Vaccination/methods , Vaccines, Synthetic/biosynthesis , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
8.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: covidwho-1365116

ABSTRACT

The COVID-19 pandemic has spread worldwide, yet the role of antiviral T cell immunity during infection and the contribution of immune checkpoints remain unclear. By prospectively following a cohort of 292 patients with melanoma, half of which treated with immune checkpoint inhibitors (ICIs), we identified 15 patients with acute or convalescent COVID-19 and investigated their transcriptomic, proteomic, and cellular profiles. We found that ICI treatment was not associated with severe COVID-19 and did not alter the induction of inflammatory and type I interferon responses. In-depth phenotyping demonstrated expansion of CD8 effector memory T cells, enhanced T cell activation, and impaired plasmablast induction in ICI-treated COVID-19 patients. The evaluation of specific adaptive immunity in convalescent patients showed higher spike (S), nucleoprotein (N), and membrane (M) antigen-specific T cell responses and similar induction of spike-specific antibody responses. Our findings provide evidence that ICI during COVID-19 enhanced T cell immunity without exacerbating inflammation.


Subject(s)
COVID-19/immunology , Immune Checkpoint Inhibitors/immunology , Melanoma/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adaptive Immunity/drug effects , Adaptive Immunity/immunology , Aged , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/complications , COVID-19/virology , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunologic Memory/drug effects , Immunologic Memory/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Male , Melanoma/complications , Melanoma/drug therapy , Middle Aged , Prospective Studies , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/virology
9.
Front Immunol ; 12: 568789, 2021.
Article in English | MEDLINE | ID: covidwho-1278390

ABSTRACT

Dysregulation of immune response was observed in COVID-19 patients. Thymosin alpha 1 (Tα1) is used in the management of COVID-19, because it is known to restore the homeostasis of the immune system during infections and cancers. We aim to observe the longitudinal changes in T lymphocyte subsets and to evaluate the efficacy of Tα1 for COVID-19. A retrospective study was conducted in 275 COVID-19 patients admitted to Shanghai public health clinical center. The clinical and laboratory characteristics between patients with different T lymphocyte phenotypes and those who were and were not treated with Tα1 were compared. Among the 275 patients, 137 (49.8%) were males, and the median age was 51 years [interquartile range (IQR): 37-64]. A total of 126 patients received Tα1 therapy and 149 patients did not. There were 158 (57.5%) patients with normal baseline CD4 counts (median:631/µL, IQR: 501~762) and 117 patients (42.5%) with decreased baseline CD4 counts (median:271/µL, IQR: 201~335). In those with decreased baseline CD4 counts, more patients were older (p<0.001), presented as critically ill (p=0.032) and had hypertension (p=0.008) compared with those with normal CD4 counts. There was no statistical difference in the duration of virus shedding in the upper respiratory tract between the two groups (p=0.214). In both the normal (14 vs 11, p=0.028) and the decreased baseline CD4 counts group (15 vs 11, p=0.008), duration of virus clearance in the patients with Tα1 therapy was significantly longer than that in those without Tα1 therapy. There was no significant difference in the increase of CD4+ (286 vs 326, p=0.851) and CD8+ T cell (154 vs 170, p=0.842) counts in the recovery period between the two groups with or without Tα1 therapy. Multivariate linear regression analysis showed that severity of illness (p<0.001) and Tα1 therapy (p=0.001) were associated with virus clearance. In conclusion, reduction of CD4+ T and CD8+ T cell counts were observed in COVID-19 patients. Tα1 may have no benefit on restoring CD4+ and CD8+ T cell counts or on the virus clearance. The use of Tα1 for COVID-19 need to be more fully investigated.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , COVID-19 Drug Treatment , Thymalfasin/therapeutic use , Adjuvants, Immunologic/pharmacology , Adult , COVID-19/immunology , China , Female , Humans , Lymphocyte Count , Male , Middle Aged , Retrospective Studies , SARS-CoV-2
10.
J Med Virol ; 93(1): 375-382, 2021 01.
Article in English | MEDLINE | ID: covidwho-1196391

ABSTRACT

There is limited information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T-cell immune responses in patients with coronavirus disease 2019 (COVID-19). Both CD4+ and CD8+ T cells may be instrumental in resolution of and protection from SARS-CoV-2 infection. Here, we tested 25 hospitalized patients either with microbiologically documented COVID-19 (n = 19) or highly suspected of having the disease (n = 6) for presence of SARS-CoV-2-reactive CD69+ expressing interferon-γ (IFN-γ) producing CD8+ T cells using flow-cytometry for intracellular cytokine staining assay. Two sets of overlapping peptides encompassing the SARS-CoV-2 Spike glycoprotein N-terminal 1 to 643 amino acid sequence and the entire sequence of SARS-CoV-2 M protein were used simultaneously as antigenic stimulus. Ten patients (40%) had detectable responses, displaying frequencies ranging from 0.15 to 2.7% (median of 0.57 cells/µL; range, 0.43-9.98 cells/µL). The detection rate of SARS-CoV-2-reactive IFN-γ CD8+ T cells in patients admitted to intensive care was comparable (P = .28) to the rate in patients hospitalized in other medical wards. No correlation was found between SARS-CoV-2-reactive IFN-γ CD8+ T-cell counts and SARS-CoV-2 S-specific antibody levels. Likewise, no correlation was observed between either SARS-CoV-2-reactive IFN-γ CD8+ T cells or S-specific immunoglobulin G-antibody titers and blood cell count or levels of inflammatory biomarkers. In summary, in this descriptive, preliminary study we showed that SARS-CoV-2-reactive IFN-γ CD8+ T cells can be detected in a non-negligible percentage of patients with moderate to severe forms of COVID-19. Further studies are warranted to determine whether quantitation of these T-cell subsets may provide prognostic information on the clinical course of COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Interferon-gamma/blood , Aged , Aged, 80 and over , Antibodies, Viral/blood , CD8-Positive T-Lymphocytes/drug effects , COVID-19/diagnosis , Female , Hospitalization , Humans , Immunoglobulin G/blood , Lymphocyte Activation , Male , Middle Aged , Preliminary Data , Spike Glycoprotein, Coronavirus/immunology
12.
Mo Med ; 118(1): 68-73, 2021.
Article in English | MEDLINE | ID: covidwho-1068428

ABSTRACT

Magnesium and vitamin D each have the possibility of affecting the immune system and consequently the cytokine storm and coagulation cascade in COVID-19 infections. Vitamin D is important for reducing the risk of upper respiratory tract infections and plays a role in pulmonary epithelial health. While the importance of vitamin D for a healthy immune system has been known for decades, the benefits of magnesium has only recently been elucidated. Indeed, magnesium is important for activating vitamin D and has a protective role against oxidative stress. Magnesium deficiency increases endothelial cell susceptibility to oxidative stress, promotes endothelial dysfunction, reduces fibrinolysis and increases coagulation. Furthermore, magnesium deficient animals and humans have depressed immune responses, which, when supplemented with magnesium, a partial or near full reversal of the immunodeficiency occurs. Moreover, intracellular free magnesium levels in natural killer cells and CD8 killer T cells regulates their cytotoxicity. Considering that magnesium and vitamin D are important for immune function and cellular resilience, a deficiency in either may contribute to cytokine storm in the novel coronavirus 2019 (COVID-19) infection.


Subject(s)
COVID-19/complications , Cytokine Release Syndrome/etiology , Disseminated Intravascular Coagulation/etiology , Immune System Diseases/etiology , Magnesium Deficiency/complications , Vitamin D Deficiency/complications , Animals , CD8-Positive T-Lymphocytes/drug effects , COVID-19/diagnosis , COVID-19/virology , Humans , Killer Cells, Natural/drug effects , Magnesium/administration & dosage , Magnesium/pharmacology , Magnesium/therapeutic use , Oxidative Stress/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Vitamin D/administration & dosage , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamins/administration & dosage , Vitamins/pharmacology , Vitamins/therapeutic use , COVID-19 Drug Treatment
14.
J Immunother Cancer ; 8(2)2020 11.
Article in English | MEDLINE | ID: covidwho-939903

ABSTRACT

BACKGROUND: The risk-benefit calculation for corticosteroid administration in the management of COVID-19 is complex and urgently requires data to inform the decision. The neutrophil-to-lymphocyte ratio (NLR) is a marker of systemic inflammation associated with poor prognosis in both COVID-19 and cancer. Investigating NLR as an inflammatory marker and lymphocyte levels as a critical component of antiviral immunity may inform the dilemma of reducing toxic hyperinflammation while still maintaining effective antiviral responses. METHODS: We performed a retrospective analysis of NLR, absolute neutrophil counts (ANCs) and absolute lymphocyte counts (ALCs) in patients with cancer enrolled in immunotherapy trials who received moderate-dose to high-dose corticosteroids. We compared paired presteroid and available poststeroid initiation values daily during week 1 and again on day 14 using the Wilcoxon signed-rank test. Associated immune subsets by flow cytometry were included where available. RESULTS: Patients (n=48) with a variety of solid tumors received prednisone, methylprednisolone, or dexamethasone alone or in combination in doses ranging from 20 to 190 mg/24 hours (prednisone equivalent). The median NLR prior to steroid administration was elevated at 5.0 (range: 0.9-61.2). The corresponding median ANC was 5.1 K/µL (range: 2.03-22.31 K/µL) and ALC was 1.03 K/µL (0.15-2.57 K/µL). One day after steroid administration, there was a significant transient drop in median ALC to 0.54 K/µL (p=0.0243), driving an increase in NLR (median 10.8, p=0.0306). Relative lymphopenia persisted through day 14 but was no longer statistically significant. ANC increased steadily over time, becoming significant at day 4 (median: 7.31 K/µL, p=0.0171) and remaining significantly elevated through day 14. NLR was consistently elevated after steroid initiation, significantly at days 1, 7 (median: 8.2, p=0.0272), and 14 (median: 15.0, p=0.0018). Flow cytometry data from 11 patients showed significant decreases in activated CD4 cells and effector memory CD8 cells. CONCLUSIONS: The early drop in ALC with persistent lymphopenia as well as the prolonged ANC elevation seen in response to corticosteroid administration are similar to trends associated with increased mortality in several coronavirus studies to include the current SARS-CoV-2 pandemic. The affected subsets are essential for effective antiviral immunity. This may have implications for glucocorticoid therapy for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Inflammation/drug therapy , Neoplasms/therapy , Neutrophils/immunology , Pandemics , Adrenal Cortex Hormones/administration & dosage , Adult , Aged , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/virology , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Female , Humans , Immunotherapy/adverse effects , Inflammation/immunology , Inflammation/pathology , Inflammation/virology , Lymphocyte Count , Lymphocytes/immunology , Lymphocytes/virology , Male , Middle Aged , Neoplasms/blood , Neoplasms/complications , Neoplasms/pathology , Neutrophils/virology , Risk Assessment , SARS-CoV-2/pathogenicity
15.
J Int Med Res ; 48(9): 300060520958594, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-788437

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) shows a wide range of severity, ranging from an asymptomatic presentation to a severe illness requiring intensive care unit admission. Identification of a strategy to manage the severity of this disease will not only help to reduce its case fatality but also help to remove some of the burden from the already overwhelmed health care systems. While successful management of symptoms in general is important, identifying measures to modify the severity of the illness is a key factor in the fight against this pandemic. METHODS: This paper presents a short literature review to suggest a new treatment modality for COVID-19. RESULTS: COVID-19 is less severe and rarely fatal in children than in adults, which could be caused by greater fluctuations of plasma epinephrine in children. Our literature survey endorses this hypothesis according to both the epidemiological and immunological findings. CONCLUSION: Application of epinephrine pulses with a specific amplitude may be considered an intervention to minimize the severity of COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Circadian Rhythm/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Epinephrine/therapeutic use , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Adult , Age Factors , Asymptomatic Diseases , Biomarkers/blood , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19 , Child , Circadian Rhythm/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Drug Administration Schedule , Epinephrine/blood , Epinephrine/immunology , Humans , Immunity, Innate/drug effects , Models, Immunological , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Prognosis , Severity of Illness Index
16.
Cell Rep Med ; 1(6): 100095, 2020 09 22.
Article in English | MEDLINE | ID: covidwho-779772

ABSTRACT

Induction of protective mucosal T cell memory remains a formidable challenge to vaccinologists. Using a combination adjuvant strategy that elicits potent CD8 and CD4 T cell responses, we define the tenets of vaccine-induced pulmonary T cell immunity. An acrylic-acid-based adjuvant (ADJ), in combination with Toll-like receptor (TLR) agonists glucopyranosyl lipid adjuvant (GLA) or CpG, promotes mucosal imprinting but engages distinct transcription programs to drive different degrees of terminal differentiation and disparate polarization of TH1/TC1/TH17/TC17 effector/memory T cells. Combination of ADJ with GLA, but not CpG, dampens T cell receptor (TCR) signaling, mitigates terminal differentiation of effectors, and enhances the development of CD4 and CD8 TRM cells that protect against H1N1 and H5N1 influenza viruses. Mechanistically, vaccine-elicited CD4 T cells play a vital role in optimal programming of CD8 TRM and viral control. Taken together, these findings provide further insights into vaccine-induced multifaceted mucosal T cell immunity with implications in the development of vaccines against respiratorypathogens, including influenza virus and SARS-CoV-2.


Subject(s)
Adjuvants, Vaccine/pharmacology , Lung/drug effects , T-Lymphocytes/drug effects , Acrylic Resins/administration & dosage , Acrylic Resins/pharmacology , Adjuvants, Vaccine/administration & dosage , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Inflammation , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/pharmacology , Intraepithelial Lymphocytes/drug effects , Intraepithelial Lymphocytes/immunology , Lung/immunology , Memory T Cells/drug effects , Memory T Cells/immunology , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/drug effects , T-Lymphocytes/immunology , Toll-Like Receptors/agonists
17.
Immunity ; 53(4): 724-732.e7, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-710374

ABSTRACT

SARS-CoV-2 infection has emerged as a serious global pandemic. Because of the high transmissibility of the virus and the high rate of morbidity and mortality associated with COVID-19, developing effective and safe vaccines is a top research priority. Here, we provide a detailed evaluation of the immunogenicity of lipid nanoparticle-encapsulated, nucleoside-modified mRNA (mRNA-LNP) vaccines encoding the full-length SARS-CoV-2 spike protein or the spike receptor binding domain in mice. We demonstrate that a single dose of these vaccines induces strong type 1 CD4+ and CD8+ T cell responses, as well as long-lived plasma and memory B cell responses. Additionally, we detect robust and sustained neutralizing antibody responses and the antibodies elicited by nucleoside-modified mRNA vaccines do not show antibody-dependent enhancement of infection in vitro. Our findings suggest that the nucleoside-modified mRNA-LNP vaccine platform can induce robust immune responses and is a promising candidate to combat COVID-19.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , RNA, Messenger/immunology , RNA, Viral/immunology , Viral Vaccines/administration & dosage , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Disease Models, Animal , Furin/genetics , Furin/immunology , Humans , Immunity, Humoral/drug effects , Immunization/methods , Immunogenicity, Vaccine , Immunologic Memory/drug effects , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , RNA, Messenger/genetics , RNA, Viral/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic , Viral Vaccines/biosynthesis , Viral Vaccines/genetics
18.
Nat Commun ; 11(1): 3924, 2020 08 06.
Article in English | MEDLINE | ID: covidwho-695765

ABSTRACT

Several studies show that the immunosuppressive drugs targeting the interleukin-6 (IL-6) receptor, including tocilizumab, ameliorate lethal inflammatory responses in COVID-19 patients infected with SARS-CoV-2. Here, by employing single-cell analysis of the immune cell composition of two severe-stage COVID-19 patients prior to and following tocilizumab-induced remission, we identify a monocyte subpopulation that contributes to the inflammatory cytokine storms. Furthermore, although tocilizumab treatment attenuates the inflammation, immune cells, including plasma B cells and CD8+ T cells, still exhibit robust humoral and cellular antiviral immune responses. Thus, in addition to providing a high-dimensional dataset on the immune cell distribution at multiple stages of the COVID-19, our work also provides insights into the therapeutic effects of tocilizumab, and identifies potential target cell populations for treating COVID-19-related cytokine storms.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , Betacoronavirus/immunology , Coronavirus Infections/immunology , Cytokines/immunology , Monocytes/immunology , Pneumonia, Viral/immunology , Antibodies, Monoclonal, Humanized/administration & dosage , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Computational Biology , Coronavirus Infections/blood , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cytokines/blood , Humans , Inflammation/drug therapy , Macrophages/drug effects , Macrophages/immunology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Receptors, Interleukin-6/immunology , SARS-CoV-2 , Single-Cell Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL